基于模型的经颅超声疗法的治疗计划通常涉及从头部的X射线计算机断层扫描(CT)图像中映射头骨的声学特性。在这里,将三种用于从磁共振(MR)图像中生成伪CT图像的方法作为CT的替代方法。在配对的MR-CT图像上训练了卷积神经网络(U-NET),以从T1加权或零回波时间(ZTE)MR图像(分别表示TCT和ZCT)生成伪CT图像。还实施了从中兴通讯到伪CT的直接映射(表示为CCT)。在比较测试集的伪CT和地面真相CT图像时,整个头部的平均绝对误差为133、83和145 Hounsfield单位(HU),以及398、222和336 HU的头骨内的颅骨内部的平均误差为133、83和145个。 TCT,ZCT和CCT图像。还使用生成的伪CT图像进行了超声模拟,并将其与基于CT的模拟进行了比较。使用环形阵列传感器针对视觉或运动皮层。基于TCT图像的模拟,模拟局灶性局灶性,焦点位置和焦距的平均差异为9.9%,1.5 mm和15.1%,ZCT的平均差异为5.7%,0.6 mm和5.7%,为6.7%,和5.7% CCT为0.9毫米,为12.1%。映射的图像的改进结果突出了使用成像序列的优势,从而改善了颅骨的对比度。总体而言,这些结果表明,基于MR图像的声学仿真可以与基于CT的声学相比精度。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Research on automated essay scoring has become increasing important because it serves as a method for evaluating students' written-responses at scale. Scalable methods for scoring written responses are needed as students migrate to online learning environments resulting in the need to evaluate large numbers of written-response assessments. The purpose of this study is to describe and evaluate three active learning methods than can be used to minimize the number of essays that must be scored by human raters while still providing the data needed to train a modern automated essay scoring system. The three active learning methods are the uncertainty-based, the topological-based, and the hybrid method. These three methods were used to select essays included as part of the Automated Student Assessment Prize competition that were then classified using a scoring model that was training with the bidirectional encoder representations from transformer language model. All three active learning methods produced strong results, with the topological-based method producing the most efficient classification. Growth rate accuracy was also evaluated. The active learning methods produced different levels of efficiency under different sample size allocations but, overall, all three methods were highly efficient and produced classifications that were similar to one another.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译